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Abstract: The present investigation deals with the study of annular axisymmetric stagnation flow and heat transfer of a Casson 

fluid through porous medium in a moving cylinder. The inner cylinder is rotating with a fixed angular velocity and is also 

translating along axial axis with constant axial velocity while the outer cylinder is assumed fixed. Fluid is injected from the top 

surface of the fixed outer cylinder towards the translating and rotating inner cylinder. The motion of the Casson fluid is assumed 

under the influence of some porous media. The governing nonlinear partial differential equations of conservation of mass, 

conservation of li near momentum and heat transfer are obtained and then simplified with the help of a set of suitable similarity 

transformations which reduces the original set of partial differential equations into a new simplified set of ordinary differential 

equations. The resulting system of ordinary differential equations is then solved numerically with the aid of fifth order 

Runge-Kutta Fehlberg method. A comparison of special cases of the present numerical solution with the already available work 

is also included through tables. The behavior of important involved physical non-dimensional parameters like Prandtl numbers, 

porosity parameter and Reynolds numbers is also presented at the end. 
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1. Introduction 

The study of stagnation point flow was initiated by 

Hiemenz [1]. Since then many researchers have contributed to 

the study of stagnation point flow for viscous and 

non-Newtonian fluids for different flow geometries. Weidman 

and Putkaradze [2] have classified stagnation flows as viscous 

or inviscid, steady or unsteady, two or three dimensional, 

symmetric or asymmetric, normal or oblique, homogenous or 

inhomogeneous and forward or reverse. In certain situations, 

fluid is been stagnated by the surface of the object, while in 

some cases a free stagnation point or line exists in the interior 

of the fluid domain. The problem of mixed convection 

stagnation point flow of a non-Newtonian micropolar 

nanofluid flowing over a vertical slender cylinder is studied by 

Rehman and Nadeem [3]. In another work, Robert et al [4] 

have analyzed the hydromagnetic stagnation point flow of a 

second grade fluid over a stretching sheet. Chiam [5] has 

examined the variable conductivity heat transfer in a 

stagnation flow towards a stretching sheet. In a very recent 

work, Rehman et al [6] have presented the solution for the 

problem of boundary layer stagnation flow of a third grade 

fluid that is flowing over an exponentially stretching surface. 

The non-orthogonal stagnation point flow towards a stretching 

vertical plat was examined by Yian et al [7]. The results 

obtained in [7] indicate that when the stretching velocity of the 

surface is greater than the free stream stagnation velocity the 

boundary layer gains an inverted structure. Few other 

interesting works concerning the stagnation flows are referred 

in [8-22]. 

Recently, Nadeem et al [23] have discussed the 

axisymmetric stagnation flow of a micropolar fluid containing 

nanoparticles and is flowing through the annular region 

between the concentric cylinders. The present work provides 

an investigation for the flow of a non-Newtonian Casson fluid 

flowing through porous medium. The fluid is assumed to be 

flowing through the annular region between the two 
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concentric cylinders. The infinite inner cylinder is rotating as 

well as translating along the axial direction while the finite 

outer cylinder is kept fixed. The solution of such finite domain 

stagnation flow problem is very rare. For solution of the 

problem, first the governing equations are 

nondimensionalized using a similarity transformation; the 

obtained system of ordinary differential equations is solved 

using the numerical scheme the Fehlberg method. The 

behavior of velocity and temperature profiles is discussed in 

detail for the parameters involved at the end. 

2. Formulation 

Consider an incompressible flow of a Casson fluid between 

two cylinders flowing through porous medium. The flow is 

assumed to be axisymmetric about z -axis. The inner cylinder 

is of radius R  rotating with an angular velocity Ω  and 

moving with velocity W  in the axial z -direction. The inner 

cylinder is enclosed by an outer cylinder of radius 0b R . The 

fluid is injected radially with velocity U  from the outer 

cylinder towards the inner cylinder. The governing equations 

of motion and heat transfer are [24-30]. 
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where ( ), ,u v w  are the velocity components along ( ), ,r zθ  axes, µ  is the viscosity, ρ  is the density, ν  is the kinematic 

viscosity, p  is pressure, β  is the Casson fluid parameter, 
pϕ  is porosity of porous space, 0k  is permeability of porous 

space, α  is the thermal diffusivity and T  is temperature. The corresponding boundary conditions are 

1( , ) 0,     ( , ) ,     ( , ) ,     ( , ) ,u R z v R z a w R z W T R z T= = Ω = =                        (6) 

0 0 0 0 2( , ) ,     ( , ) 0,     ( , ) 0,     ( , ) ,u b R z U v b R z w b R z T b R z T= − = = =                    (7) 

where 1T  is the fluid temperature at the surface of the inner 

cylinder while 2T  is the fluid temperature at the surface of 

the outer cylinder. 

3. Solution of the Problem 

The system of nonlinear partial differential equations 

( )1 5−  subject to the boundary conditions ( )6 7−  are 

simplified using the similarity transformations [16] 
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With the help of above transformation, ( ). 1Eq  is 

identically satisfied and ( ). 2Eqs  to ( )5  take the following 

form 
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in which Re / 2UR ν=  is the Reynolds number, 
2

0/ 4pkp R kϕ=  is the porosity parameter and Pr /ν α=  is 

the Prandtl number. The boundary conditions in 

nondimensional form are 

( ) ( ) ( ) ( ) ( )1 0,   1 0,   1 1,   1 1,   1 0,f f g h θ′= = = = =   (14) 

( ) ( ) ( ) ( ) ( ),   0,   0,   0,   1.f b b f b g b h b bθ′= = = = =  (15) 
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Where 0b b= . For numerical solution of the problem, we 

consider 1 ,F f ′=  2 1 ,F F ′=  3 2 ,F F ′=  ,G g ′=  H h′= and 

ϕ θ ′=  then the resulting system is 

3 3 3 1 2 2
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The above system of first order odes is solved numerically 

with the help of fifth order Fehlberg method and the obtained 

results are discussed in the next section. 

4. Results and Discussion 

The numerical solution of the problem of steady, 

incompressible, non-Newtonian Casson fluid flowing through 

the annular region between the concentric cylinders is obtained 

through the fifth order Fehlberg method. The outer cylinder is 

assumed to be fixed while the inner cylinder is translating with a 

constant axial velocity and is also rotating axisymmetrically 

about the axial direction through some porous medium. The 

behavior of non-dimensional velocity profiles for the involved 

parameters is plotted in figures 1 and 2 [31-35]. In these figures 

f  is associated with the fluid flow in radial direction, g  is 

concerned with the fluid flow in axial direction while h  

represents the rotation effects in the fluid flow caused due to the 

rotation of inner cylinder. Figures (1-3) show the behavior of 

radial velocity with respect to the Reynolds numbers Re,  

Casson fluid parameter β  and the porosity parameter kp  

respectively. From figure 1 it is noted that with the increase in 

Reynolds numbers Re  the non-dimensional radial velocity 

increases. This happen because higher radial velocity is 

concerned with a higher injunction velocity (and so a higher 

Reynolds number) from outer cylinder towards the inner cylinder. 

Figure 2 shows that with increase in the Casson fluid parameter 

β  increases the radial velocity .f  figure 3 indicates that by 

increasing the porosity parameter kp  the radial velocity 

decreases because higher kp  corresponds to porous medium 

with lesser permeability and thus fluid flow encounters more 

resistance. The influence of Reynolds numbers Re  over the 

velocity gradient f ′  is sketched in figure 4 that indicates that 

near the surface of inner cylinder velocity gradient increases with 

the increase in Re  while near the surface of outer cylinder, 

increase in Re  decreases the velocity gradient. Figures 5 and 6 

give the impact of Casson fluid parameter β  and the porosity 

parameter kp  over the velocity gradient .f ′  From these 

graphs it is observed that near the surface of inner cylinder 

increase in β  increases f ′  while increase in kp  decreases 

,f ′  whereas near the surface of outer cylinder, increase in β  

decreases f ′  while increase in kp  increases .f ′  figures 7-9 

show the behavior of axial velocity profile g  for Reynolds 

numbers Re,  Casson fluid parameter β  and the porosity 

parameter .kp  From these plots it is noticed that the axial 

velocity g decreases with increase in all the parameters Re,  β  

and .kp  figures 10-12 shows the pattern adopted by the 

non-dimensional rotation velocity h  for the involved 

parameters Re, β  and kp  respectively. From these figures it 

is evident that with increase in all the three parameters the 

angular velocity profile h  decreases. The variation in 

temperature flow θ  for Prandtl numbers Pr  and Reynolds 

numbers Re  is presented in figures 13 and 14 From these 

sketches it is noted that with increase in both Pr  and Re  the 

non-dimensional temperature profile increases [36-42]. 

To validate the accuracy of the current numerical results the 

present Fehlberg solutions are compared as a special case with 

the existing work of Hong and Wang [16] in table 1 The 

boundary derivatives obtained for the velocity profiles are in 

excellent agreement. Table 2 predicts the behavior of boundary 

derivatives for the velocity profiles f  and g  computed at the 

surface of the inner cylinder that proportional to the skinfriction 

at the surface of the inner cylinder computed for different values 

of the Casson fluid parameter β  and the porosity parameter 

.kp  From table 2 it is evident that increasing β  and kp  also 

increases the skinfriction coefficient. Table 3 contains the values 

for the boundary derivative of the angular velocity profile that are 

computed for different Reynolds numbers and Prandtl numbers 

and that corresponds to the azimuthal shear stress at the surface of 

the inner cylinder. From table 3 it is observed that increase in 

both Re  and Pr  increases the azimuthal shear stress. Table 4 

shows the numerical values of the boundary derivative of the 

temperature flow function θ  that predicts the behavior of 

Nusselt numbers Nu  against Prandtl numbers Pr  and 

Reynolds numbers Re.  From table 4 it is observed that the 

Nusselt numbers increases with the increase in both Pr  and Re  

[43-45]. 

 

Figure 1. Influence of Re over f. 
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Figure 2. Influence of β over f. 

 

Figure 3. Influence of kp over f. 

 

Figure 4. Influence of Re over fϴ. 

 

Figure 5. Influence of β over fϴ. 

 

Figure 6. Influence of kp over fϴ. 

 

Figure 7. Influence of Re over g. 

 

Figure 8. Influence of β over g. 

 

Figure 9. Influence of kp over g. 
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Figure 10. Influence of Re over h. 

 

Figure 11. Influence of β over h. 

 

Figure 12. Influence of kp over h. 

 

Figure 13. Influence of Pr over θ. 

Table 1. Comparison of the boundary derivatives of the present results with the work in [16] when β=20000 and kp=0.  

β/kp 
f´´(1) -g´(1) 

0.2 0.5 1 2 5 0.2 0.5 1 2 5 

0.5 13.366 13.374 13.386 13.409 13.481 2.805 2.821 2.847 2.899 3.051 

1 14.499 14.509 14.523 14.552 14.639 3.288 3.308 3.341 3.407 3.598 

5 16.583 16.593 16.608 16.640 16.739 4.071 4.097 4.141 4.226 4.476 

50 17.431 17.434 17.455 17.487 17.586 4.367 4.395 4.442 4.535 4.807 

500 17.530 17.539 17.554 17.585 17.685 4.401 4.429 4.477 4.571 4.845 

Table 2. Behavior of boundary derivatives for linear velocity profiles computed for different β and kp when Re=10. 

Re 
f´´(1) -f´´´(1) -g´(1) -h´(1) 

Present [16] Present [16] Present [16] Present [16] 

0.1 11.001 11.0010 36.1443 36.1443 1.4963 1.4963 10.5151 10.5151 

1 11.677 11.6772 41.0795 41.0797 1.9309 1.9309 10.6511 10.6511 

10 17.5345 17.5348 93.565 93.5670 4.3856 4.3856 12.0407 12.0407 

100 44.449 44.4492 790.731 590.738 12.6450 12.6450 24.8226 24.8226 

Table 3. Behavior of boundary derivatives for angular velocity profiles computed for different Pr and Re when β=5.  

Re/kp 
-h´(1) 

0.2 0.5 1 2 5 

0.5 1.6705 1.7335 1.8358 2.0309 2.5534 

1 1.7987 1.8584 1.9555 2.1412 2.6422 

5 2.7703 2.8095 2.8740 3.0003 3.3588 

10 3.6861 3.7142 3.7608 3.8529 4.1216 

100 10.5678 10.5766 10.5912 10.6203 10.7076 
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Table 4. Behavior of boundary derivatives for temperature profile computed for different pr and re when β=5, kp=2. 

Re/Pr 
(1)ϴϴ  

0.7 7 20 70 700 

0.5 1.5063 2.0426 2.8658 4.4448 9.7080 

1 1.5707 2.5416 3.6821 5.6738 12.3513 

5 2.0910 4.6744 6.7300 10.3204 22.4300 

10 2.6897 6.2203 8.9540 13.7367 29.8783 

100 7.6624 17.8594 25.7870 39.6852  

 

 

Figure 14. Influence of Re over θ. 

5. Conclusion 

In the present paper the authors have analyzed the problem 

of Casson fluid flow through the annular region formed 

between to concentric cylinders. Main findings of the study 

are as under 

1. With increase in the porosity parameter the Reynolds 

number the angular velocity decreases 

2. With increase in the Prandtl number the temperature 

profile the thermal layer decreases. 
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