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Abstract: In the 2D materials family, stanene has drawn a specific interest because of its remarkable exhibitions and 
properties. Stanene is one of the most active areas of nanomaterials research due to their potential for integration into next-
generation electronic. Using many body interactions that lead to bond charge model, the elastic, thermo-physical, and Debye 
temperature variations of monolayer stanene were investigated. The elasticity is a fundamental property of crystalline materials 
and is of great importance in physical science, including materials science, solid state physics and chemistry, geological 
sciences. Elastic constants such as Young’s modulus, Poisson’s ratio, bulk modulus and shear modulus have also been 
calculated. With the help of Elastic constants, the values longitudinal and transverse sound velocities also have been computed. 
Various studies of single layer stanene have been carried out to investigate the phonon properties and Phonon Density of 
States, however, other thermo physical properties such as heat capacity and Grüneisen parameter have been neglected. In this 
research paper, a comprehensive study on heat capacity and Grüneisen parameter is performed by Python program and all the 
above mention properties are equally important for engineering applications. Elastic and Thermo-Physical properties were 
calculated is agreed very close with the result of other researchers. 
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1. Introduction 

Stanene is one of the most active areas of nanomaterials 
research due to their potential for integration into next-
generation electronic. The use of phenomenological models 
in the study of the vibrational properties of Stanene allows 
a complete and straightforward description in highly 
symmetric direction with little bit greater computational 
effort. Stanene, the other 2D group-IV materials, with 
Honey-comb and buckled lattice structures has been 
discovered by epitaxial growth on substrates [1, 2]. The 
lattice vibrations are responsible for the characteristic 
properties of solid such as Phonon properties, Phonon 
group velocities, Phonon Scattering mechanism, Thermal 
conductivity and Elastic properties etc. The atoms in a 
stanene are executing vibrations about their equilibrium 
positions with energy governed by the temperature of the 
solid; such vibrations in crystals are called lattice 

vibrations. The vibration of the atoms depends on the 
interatomic potentials within the crystal. To determine the 
vibrational frequencies and the corresponding modes one 
needs to solve the dynamical matrix, which can be obtained 
from the interatomic interactions potential [6-10]. There 
have been several theoretical attempts to understand the 
lattice vibrations and Thermal properties of Stanene [11-
13], which usually employing the force constant model, the 
rigid ion model, the rigid shell model, the dipole 
approximation etc, but bond charge model is showing best 
results for IVth group of semiconductor. The adiabatic bond 
charge (BCM) method was originally developed by Weber 
[3]. Very recently, the researchers has discovered that 
among Group IV elements, Silicene, Germanene apart from 
Stanene can form stable honey-comb structures with 2D 
nanostructure [4, 5]. 
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The condition for the non-trival solutions for wave 
equation of 2D nanostructure, honey-comb and buckled 
lattice [20, 22] lead to the characteristic or secular 
equation, 

( ) ( )2 0− =eff
D q q mIω                       (1) 

( ); 1,2,3,.....2j q j nω ω= =  

This is the secular equation of 2x2 dimensions. The 
elements of dynamical matrix are defined as 

��� ���
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The above equation in matrix form is solved by MATLAB 
program. And the result is investigated along hexagonal 

Brillouin zone with symmetry points Г (0,0), M (
��
�√ , 0). 

The vibrational frequencies for acoustic modes along 

symmetry line with coupling constant " j =8.4 x 10
-3 "  for 

stanene is deduce as [20] 
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2. Study of Grüneisen Parameters of 

Stanene 

On the basis of oscillator model of the solid, Grüneisen 
predicted that the three important physical properties of a 
solid, the thermal expansion coefficient, the lattice specific 
heat and the compressibility are linked together. To 
understand the physical importance of the relation, we 
examine that the frequency of a lattice vibration of specified 
wave vector changes with the lattice parameter of the solid, 
this lead to anharmonic effect. For simplicity, we assume that 
a given change in lattice parameter gives rise to the same 
relative change of frequency of every mode of vibration. The 
results of Kamlesh et, al were obtained by calculating 
individual values of the angular frequencies #�;�,%  for 
different modes in high symmetry direction [20, 22, 23]. 

The Grüneisen parameter for 2D, nanostructure 
materials of IVth group of semiconductor is derived by 
Xu-Jin Ge et al [21] 

γ��, 0� 	 � �1
23;4,5
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                   (5) 

It is now clear that if #�;�,%  is angular frequency of the 
solid, ωa;q,j is the vibrational frequency corresponding to 
wave vector q, mode j, a0 is the equilibrium lattice constant. 
γ��, 0� is independent of compressibility and thus it has the 

same value for every modes at low temperature. Thus at low 
frequency modes, the variation is negligible for Grüneisen 
parameter. But when Grüneisen parameter	γ��, 0� is associated 

with a low stiffness mode, it gets heavily weighted and leads to 
a decrease in γ��, 0� at low temperature. Grüneisen parameter 
γ��, 0� is the same for modes in the dispersive region of any 
given branch of acoustic modes and here the optics modes can 
be ignored. The γ��, 0� calculated in table 1 comes from the 
Python program. 

In high symmetry direction, Г ‒M 
Grüneisen parameter of stanene is determined by acoustics 

modes in high symmetry direction 

M (
��
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Figure 1. Variation Gru¨neisen parameter with wave vector q in Г- M. 

Using the quasi-harmonic approximation (QHA), we 
computed the Grüneisen parameter of Stanene, 2D materials. 
We find that, the Grüneisen parameter of stanene 2D 
materials is negative for low frequency phonons near Γ. 

The calculated the Grüneisen parameter along high 
symmetry lines within the Brillouin zone is shown in Figure 1. 
The dispersion lines are similar due to the honey-combed 
lattice structures. Dispersion of Gru¨neisen parameter along 
the high symmetry path is plotted. The acoustic and optical 
modes along Z direction (ZA and ZO) do not couple with 
other phonon modes, resulting in crossings of dispersion 
lines in Stanene along high symmetry direction because of 
larger buckling. This results in the development of phonon 
band gaps and the decrement in phonon group velocity. 
Further, both of them reduce the phonon thermal 
conductivity. The large buckling in stanene leads to the ZA 
mode for very low value near Γ points. This means the 
applied strain should be small enough otherwise harmonic 
approximation is not valid any more. We have shown the 
Stanene LA and TO modes have negative and similar 
Gru¨neisen parameters; the anomalous hardening of phonon 
modes upon expansion is a general feature of the 2D buckled 
mode and the reason why Stanene shows negative. But the 
TA and LA modes have Gru¨neisen parameters which are 
varying from -1.4 to -5.2 for Stanene corresponding to 
different wave vector q. 
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3. Longitudinal &Transverse Velocities 

of Monolayer Stanene 

The equation of elasticity is derived from Newton’s law: 

; 6<=>
6?< 	 ∑ 6<@>5

6A5<%                               (7) 

Where ρ2d is surface mass density in units of Kilogram per 
area. 

A sound wave has a displacement given by 

B��� 	 B8���[���. � − #D�]                    (8) 

Time derivative give –iω, and space derivative 
6+6A → �� . 

The strains are 

e1=iqx ux, e2=iqyuy, e6=i(qxuy+qyux) 

then equation of motion become 
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(G$$�+� + (IJJKIJ<�� �A� − ;#��B+ +�(G$$ + (IJJKIJ<�� � �A�+BA = 0  

It has solution only if the determinant of coefficient of ux 
and uy should be vanishes i.e 
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Simplify this we obtain 

;�#9 − ;#�(G$$ + �IJJKIJ<� � �� + G$$ (IJJKIJ<�� �9 = 0 (9) 

This is quadratic equation of ρω2 and its solutions have 
two values give the longitudinal and transverse acoustic 
velocities. 

MNO = PIJJQ 	                                 (10) 

MRO = PIJJKIJ<�Q                             (11) 

Table 1. Variation of sound velocities. 

Materials 
Longitudinal velocity 

(Km/Sec) 

Transverse velocity 

(Km/Sec) 

Graphene 21.59 13.82 
Stanene 3.70 2.04 

Table 2 shows the variation of Longitudinal &Transverse 
velocities of monolayer stanene. It is clear that Longitudinal 
&Transverse velocities are decreasing for Stanene in 
comparison to Graphene [18, 19]. It is understandable that 
the variation of Longitudinal &Transverse velocities is 
affected by the Phonon group velocities. It may be 

determined that the average sound wave velocity is a 
maximum when a sound wave travels with the z- axis of the 
material. 

4. Elastic Modulus of Monolayer Stanene 

In the linear theory of elasticity, the infinitesimal 
deformations are assumed, and second-order elastic constants 
(SOEC) are sufficient to describe the elastic stress-strain 
response and wave propagation in solids. For very small 
strain according to Hook’s law strain in linear with stress, 
give the relation 

ST = ∑ GT%% U%                                (12) 

Where cij are elastic stiffness constantsr 

∈T= WT%S% 
Sij is called elastic compliance constant; 
Cij are the forth rank tensor matrices. 
Graphene has C6v symmetry while stanene has D3d 

symmetry, Cij matrices for graphene and stanene is given 

GX =
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ZZ
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2D materials z tends to zero these matrices are same and 
have only two Elastics constants c11 and c12. Hexagonal 
crystals have the feature that the waves are isotropic in basal 
plane (qz=0) that is not true for cubic crystal. 

G = bG$$ G$� 0G$� G$$ 00 0 1/2(G$$ − G$��c 
Elastic compliance constants matrix is inverse of elastic 

stiffness constants matrix i.e 

W = GK$ 

W =
YZ
ZZ
[ IJJI<JJKI<J< KIJ<I<JJKI<J< 0

KIJ<I<JJKI<J< IJJI<JJKI<J< 0
0 0 �IJJKIJ<_̂

__̀  

W = bW$$ W$� 0W$� W$$ 00 0 2(W$$ − W$��c  
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Young s modulus 

d = $aJJ = I<JJKI<J<IJJ 	e = KaJ<aJJ = IJ<IJJ 	Wff = 2�W$$ � W$��  

Shear modulus is inverse of s66 i.e  

g 	 $
ahh

	 IJJKIJ<
�                                (13) 

Bulk modulus of 2D materials that is equivalent to in-
plane stiffness constant. 

The elastic energy density U is a quadratic function of the 
strains. 

i 	 $
�∑ ∑ GT%�

%j$ �T�%�
Tj$   

For isotropic e1=e2=1/2δ this give 

i 	 �IJJkIJ<� � δ�  

B=�IJJkIJ<� �                                  (14) 

Table 2. Calculated and Compared Young’s modulus Y2D, Poisson’s ratio σ, bulk modulus B and shear modulus G for Graphene and Stanene. 

Materials M(amu) ρ2d (x10-6 Kg/m2) Y2D(N/m) B2D(N/m) G2D(N/m) σ 

Graphene 12.01 0.755 340.8 207.2 144.6 0.18 
Stanene 118.71 2.088 24.14 19.95 8.6 0.39 

 
Table 1 shows the Young’s modulus Y2D, Poisson’s 

ratio υ, bulk modulus B and shear modulus G for Stanene 
estimated at room temperature. It is found that the value of 
B, Y, and G of Stanene are smaller than Graphene [15, 16, 
24, 25]. Thus Stanene have little Stiffness and bonding with 
respect to Graphene B/G and ‘σ’ are the measure of 
brittleness and ductility of solid. If σ ≤ 0.26 and the solid is 
generally brittle, otherwise it is ductile in nature. Our 
finding of lower values of B/G and σ compared to their 
critical values indicates that Stanene is not brittle in nature 
at room temperature. It is well known that for stable and 
elastic material the value of σ should be less than 0.5. The 
values of ‘σ’ evaluated for Stanene are smaller than its 
critical value. 

5. Debye Temperatures Variation of 

Stanene 

The Debye formula for heat capacity of stanene as 2D 
material is derived as 

C =4m �RӨ�
�
o Apqr

�qrK$�<
Ө Rs
8 t�                     (15) 

here � 	 u2
�vR

 

The value of m=w8�x depends on the units involved, but is 

usually stated with S.I. units as m  = 8.314 J/mol·K. The 
parameter Ө entering into our present discussion is usually 
referred to as the Debye temperature. It plays the role of a 
characteristic temperature of solid. At the Debye temperature 
at sufficiently low temperatures	y, here only long wavelength 
acoustic modes are excited. These are just the modes which 
may be treated as in elastic continuum with macroscopic 
elastic constants. The energy of short-wavelength modes is 
too high to allow these to be excited at low temperatures. 

This is a universal function of only a ratio 
R
Ө. 

 

Figure 2. Variation of Heat Capacity with temperature of Stanene. 

Table 3. Variation of Heat Capacity with temperature of Stanene. 

Temperature (K) Heat Capacity with Riemann Zeta function ζ (3) Heat Capacity (J/mol.K) 

0 0 0 
40 2.71319253137435*ζ (3) 3.26 
80 10.8527701254974*ζ (3) 13.04 
120 24.4187327823691*ζ (3) 29.35 
160 43.4110805019896*ζ (3) 52.18 
200 67.8298132843587*ζ (3) 81.53 
240 97.6749311294766*ζ (3) 117.40 
280 132.946434037343*ζ (3) 159.81 
320 173.644322007958*ζ (3) 208.72 

 

The variation of the experimentally measured specific 
heats is compared with that computed phonon spectra data. 
This comparison is usually done by plotting the Debye 

temperatures against the temperature. For calculating the 
exact variation of Debye temperatures we have used Python 
Program. In this technique, the specific heat is expressed in 
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terms of Riemann-Zeta function ζ (3). ζ (3) has a special 
value of the Riemann Zeta Function which is equal to 
1.202056903…… From the calculated specific heats at 
different temperatures, heat capacity of monolayer Stanene 
is calculated by means of standard tables. We make a plot 
of this function by using the Python Program. It is seen 
from this plot that the heat capacity approaches the zero 
value as T→0. For higher temperature, heat capacity is not 
varying abruptly and almost constant as shown in figure 
below. 

 

Figure 3. Variation of Heat Capacity at higher temperature of Stanene. 

Let us now examine it at the low temperature range more 

closely. Plot of C / (2R) as a function of �Rz�  for the 2D 

phonon system is shown in figure 3. The saturated line 
denotes the exact expression, while the variation line denotes 
the low temperature limit. C / (2R) tend to the unity in the 
high temperature limit. The specific heat at constant volume 
behavior of the Stanene does not show any anomaly. Figure 3 
illustrates the higher order of agreement with other 
researchers [14, 15, 17]. 

6. Conclusions 

Based on the discussion above, it is important to note that 
the notion of using a simple interaction potential technique 
to calculate higher-order elastic coefficients for hexagonally 
organized 2D monolayer Stanene remains valid. The 
elasticity of materials concerns the cohesion of solids and 
the thermo-Physical properties, such as phonon group 
velocities and Debye temperatures [19]. In this regard, 
elastic constants are important parameters for construction 
of inter-atomic potentials and the mechanical stability of 
crystal [18, 21]. It indicates that Stanene is stable 
corresponding to shear. The compressibility, hardness, 
ductility, toughness, brittleness and bonding nature of the 
Stanene are too well connected with the SOECs. We have 
also calculated the values longitudinal and transverse sound 
velocities of monolayer Stanene. The calculated values of 
sound velocities would be compared with available 
theoretical results [25]. Grüneisen parameter of material is 
strongly dependent on phonon polarization and wave 
vector. We evaluate it along high symmetry directions for 
acoustic modes because this mode play greater role in 

thermal expansion. The computed Grüneisen parameters of 
LA and TA branches are highest among the 2D materials of 
IVth group elements. Both modes are showing similar 
results. The theory thus gives a quite satisfactory account of 
observed variation of heat capacity in the low temperature 
region and compared with the available experimental data 
which shows a fairly good agreement. 
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