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Abstract: For decades, scientists and researchers believed that two-dimensional (2D) crystals are thermodynamically 

unstable. Graphene was the first two dimensional material that has successfully been exfoliated from bulk graphite in 2004. We 

derive interatomic potentials for Graphene for two dimensional lattice structure and using Quasi-harmonic approximations, 

Mechanical Properties of monolayer Graphene were investigated. The compressibility, hardness, ductility, toughness, brittleness 

and bonding nature of the Graphene are too well connected with the SOECs. Thus, comprehensive studies on elastic properties 

are important to show the potential of Graphene in engineering applications. Present studies of monolayer Graphene have been 

carried out to investigate the elastic constants such as Young’s modulus, Poisson’s ratio, bulk modulus and shear modulus. 

With the help of elastic constants, the values longitudinal and transverse sound velocities have been computed. We, at present 

also find the phonon group velocities at Г points along symmetry directions by PYTHON Program. Mechanical Properties 

were calculated by PYTHON program is agreed very close with the result of other researchers. 
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1. Introduction 

The elasticity is a fundamental property of crystalline 

solids and is of great importance in physical science, 

including materials science and solid state physics. The 

elasticity of materials is concern with the cohesion of solids. 

In this regard, elastic constants are important parameters for 

construction of interatomic potentials, the mechanical 

stability of crystal and wave propagation in two dimensional 

lattice structures. The Graphene structure has interesting 

features which is the good reason for studying its Mechanical 

properties. Graphene is a mono layer of hexagonally 

arranged carbon atoms which has become practically 

available today [1-3]. 

The atoms in the 2D monolayer Graphene are capable of 

executing oscillations about their equilibrium position ��, ��. 
In oscillating states the instantaneous position of atoms ��, ��) 
is denoted by���, �� � ���, �� 	 
��, ��. 

 

Figure 1. Structure of Graphene Sheet. 

Thus the Hamiltonian of the Graphene is 

� � ∑ 
����� 
� ����, �� 	 ��∑ Φ�� ��	��, �� ���� ∑ 
���, ��
���, �������  (1) 

Where Φ�� ��	��, �� � � � � !�"#��,���"$��,���%&            (2) 

The notations used here are usual, that is '� is the mass of 
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the � th
 atom,	
���, �) is a small displacement of the � th

 atom 

in the � th cell along (th direction	(,	) represent components of 

Cartesian coordinate axes and U is the ion-ion interaction 

potential. The force constants are defined as 

Φ�� ��	��, �′ � = 	−+	,�,�, where ei & ej are unit vectors, it is 

the force acting on the �  
th

 atom in the �  th cell along ( th
 

direction due to a unit displacement of the � th
 atom in the ��th cell along )th

 direction. 

The equation of vibrating motion is given by 

'�
- �(�, �) = 	−∑ Φ�� ��	��, �� � 
�(�, ��)����         (3) 

The solution of above equation is modified by the 

periodicity of lattice thus a wave–like solution of type 


�(�, �) = '�.
/ 	
��,�0[(23. �(�, �) − 5(3)67]   (4) 

Where 	
��	 is the amplitude of vibration along with 

direction of the �  
th

 atom, 	5  is the angular frequency, 	3  is 

wave vector, the factor '�.
/  has been chosen for 

convenience in further calculation [4, 6, 8]. 

2. Elastic Modulus of Monolayer 

Graphene 

In the linear theory of elasticity, the infinitesimal 

deformations are assumed, and second-order elastic constants 

(SOEC) are sufficient to describe the elastic stress-strain 

response and wave propagation in solids. For very small 

strain according to Hook’s law strain in linear with stress, 

give the relation 

9� = ∑ :��� ;�                                  (5) 

Where cij are elastic stiffness constantsr  

∈�= =��9� 
Sij is called elastic compliance constant 

Cij are the forth rank tensor matrices 

Graphene has C6v symmetry while Graphene has D3d 

symmetry, Cij matrices for Graphene and Graphene is given 

:> =
?@
@@
@A
:�� :�� :�B 0 0 0:�� :�� :�B 0 0 0:�B :�B :BB 0 0 00 0 0 :DD 0 00 0 0 0 :DD 00 0 0 0 0 1/2(:�� − :��)HI

II
IJ
 

:K =
?@
@@
@A
:�� :�� :�B :�D 0 0:�� :�� :�B −:�D 0 0:�B :�B :BB 0 0 0:�D −:�D 0 :DD 0 00 0 0 0 :DD :�D0 0 0 0 :�D 1/2(:�� − :��)HI

II
IJ
 

2D materials z tends to zero these matrices are same and 

have only two Elastics constants c11 and c12. Hexagonal 

crystals have the feature that the waves are isotropic in basal 

plane (qz =0) that is not true for cubic crystal. 

: = L:�� :�� 0:�� :�� 00 0 1/2(:�� − :��)M 
Elastic compliance constants matrix is inverse of elastic 

stiffness constants matrix i.e 

= = :.� 

= =
?@
@@
@A

:��:��� − :���
−:��:��� − :��� 0

−:��:��� − :���
:��:��� − :��� 0

0 0 2:�� − :��HI
II
IJ
 

= = L=�� =�� 0=�� =�� 00 0 2(=�� − =��)M 
Young s modulus 

N = �
K// = O //.O / O// 	P = .K/ K// = O/ O// 	=QQ = 2(=�� − =��)  

Shear modulus is inverse of s66 i.e 

R = �
KSS = O//.O/ �                            (6) 

Bulk modulus of 2D materials that is equivalent to in-

plane stiffness constant 

The elastic energy density U is a quadratic function of the 

strains. 

T = �
�∑ ∑ :����U� ,�,���U�   

For isotropic e1=e2=1/2δ this give 

T = �O//VO/ � � δ�  

B=�O//VO/ � �                                     (7) 

Table 1. Calculated and Compared Young’s modulus Y2D, Poisson’s ratio σ, bulk modulus B and shear modulus G for Graphene. 

Materials M (amu) ρ2d (x10-6 Kg/m2) Y2D (N/m) B2D(N/m) G2D (N/m) σ 

Graphene 12.01 0.7550 340.8020 207.2041 144.6320 0.1802 

 

Table 1 shows the Young’s modulus Y2D, Poisson’s ratio υ, 

bulk modulus B and shear modulus G for Graphene 

estimated at room temperature. It is found that the value of B, 

Y, and G of Graphene are smaller than Graphene [7, 15, 16]. 

Thus Graphene have little Stiffness and bonding with respect 

to Graphene B/G and ‘σ’ are the measure of brittleness and 
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ductility of solid. If σ ≤ 0.26 and the solid is generally brittle, 

otherwise it is ductile in nature. Our finding of lower values 

of B/G and σ compared to their critical values indicates that 

Graphene is not brittle in nature at room temperature. It is 

well known that for stable and elastic material the value of σ 

should be less than 0.5. The values of ‘σ’ evaluated for 

Graphene are smaller than its critical value. The agreement 

between the calculated elastic constants of the Graphene 

lattice structure and the experimental values is reasonably 

good. 

3. Longitudinal &Transverse Velocities 

of Monolayer Graphene 

The equation of elasticity is derived from Newton’s law: 

X � "#�Y � ∑ � Z#$�[$ �                           (8) 

Where ρ2d is surface mass density in units of Kilogram per 

area. 

A sound wave has a displacement given by 


��� � 
&,�0[(�3. � − 56�]                                                                          (9) 

Time derivative give –iω, and space derivative 
�\�[ → (3. The strains are 

e1=iqx ux, e2=iqyuy, e6=i(qxuy+qyux) 

then equation of motion become 

�:��3[� 	 �O//.O/ �� 3\� − X5��
[ 	 ��:�� 	 �O//.O/ �� � 3[3\
\ � 0  

�:��3\� 	 �O//.O/ �� 3[� − X5��
\ 	 ��:�� 	 �O//.O/ �� � 3[3\
[ � 0  

It has solution only if the determinant of coefficient of ux and uy should be vanishes I 

^�:��3[� 	 �O//.O/ �� 3\� − X5�� ��:�� 	 �O//.O/ �� � 3[3\��:�� 	 �O//.O/ �� � 3[3\ �:��3\� 	 �O//.O/ �� 3[� − X5��^ � 0. 
Simplify this we obtain 

X�5D − X5��:�� 	 �O//.O/ � � 3� 	 :�� �O//.O/ �� 3D � 0                                            (10) 

This is quadratic equation of ρω
2 
and its solutions have two values give the longitudinal and transverse acoustic velocities. 

_̀ a � bO//c 	                                                                                           (11) 

_da � bO//.O/ �c                                                                                         (12) 

Table 2. Longitudinal and Transverse velocities. 

Materials Longitudinal velocity (Km/Sec) Transverse velocity (Km/Sec) 

Graphene 21.5903 13.8210 

 

Table 2 shows the variation of Longitudinal &Transverse 

velocities of monolayer Graphene. It is clear that 

Longitudinal &Transverse velocities are decreasing for 

Graphene in comparison to Graphene [9, 10]. It is 

understandable that the variation of Longitudinal 

&Transverse velocities is affected by the Phonon group 

velocities. It may be determined that the average sound wave 

velocity is a maximum when a sound wave travels with the z- 

axis of the material. 

4. Phonon Group Velocity 

The speed of propagation of an acoustic phonon, which is 

also the speed of sound in the lattice, is given by the slope of 

the acoustic dispersion relation, ∂ωj/∂qj i.e. 

e> � fg$fh$                                  (13) 

3� � 3[ , 3[ 

eK� = √3
4 l(+))12 mcos �√34 3ql�r  

eK� = l s98 +)v
12 mcos �√34 3ql�r  

eKB = √3
2 l(+))12 msin �√32 3�l�+ sin y√33�lzr  

eKD = 0 

eK{ = 0 
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eKQ � − √32 l�11	+)�12 msin �√32 3�l�− sin y√33�lzr  (14) 

  

  

  

Figure 2. Calculated Phonon group velocities for Graphene along symmetry line Г- M. 

The phonon group velocities have been computed by 

solving the secular equation [12, 13] for the six vibration 

frequencies corresponding to the phonon wave vectors along 

the principal symmetry direction Г- M with the help of 

Python Program. There exists number of phonon branches 

such as LA, TA, ZA, LO, TO, ZO in Graphene [11] Their 

existence can be explained by the quantization of lattice 

waves along the X-Y axis due to partial or complete phonon 

spatial confinement along the cross-plane direction. Figure 2 

shows the group velocities for Graphene. The observations 

inferred from this figure are as follows, six curves show the 

group velocity corresponding to six phonon branches. The 

group velocity has been reduced in the nanostructure due to 

complete phonon confinement. Group velocity approaches to 

zero as wave vector approaches to zero. Some phonon 

branches have more group velocity as compared to bulk. No 
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phonon branch has velocity more than that in bulk cladding 

material. Along the principal symmetry direction Г- M, 

3200 m/s, sound velocities are found in Graphene. Graphene 

is very important from device point of view. In general flow 

of electrons is impeded by the presence of phonons. The 

dispersion of phonons is helpful in understanding the heat 

evolution and transmission in 2D materials. The phonon 

dispersion relations for Graphene has been plotted and 

utilized to study the phonon group velocities in these 

structures. The affect of phonon confinement on the two 

structures is different. Group velocity is suppressed in one 

case and enhanced in the other. Figure 2 show that the 

variation of ω with q is anomalous which has also been 

shown in the same figure (curved lines). There is 

considerable decrease in group velocity from its bulk value. 

The reduced group velocity will result in reduced thermal 

conductivity. This result has also been corroborated by Bo 

Peng et al. [9, 10]. 

5. Conclusion and Discussions 

The present work is a systematic theoretical investigation of 

the elastic properties of Graphene. Based on the discussion 

above, it is important to note that the notion of using a simple 

interaction potential technique to calculate elastic coefficients 

for hexagonally organized 2D monolayer Graphene remains 

valid. The elasticity of materials concerns the cohesion of 

solids and the mechanical properties, such as phonon group 

velocities [10, 14]. In this regard, elastic constants are 

important parameters for construction of inter-atomic 

potentials and the mechanical stability of crystal. It indicates 

that Graphene is stable corresponding to shear. We have also 

calculated the values longitudinal and transverse sound 

velocities of monolayer Graphene. The calculated values of 

sound velocities would be compared with the available 

experimental data which shows a fairly good agreement [5, 9, 

10]. Group velocity for some branches has been increased 

not only from there free standing value, but also from their 

bulk value. We derived the solution for the Г and M points 

and numerically investigated the buckling effect on the 

material for phonon properties. We mainly fitted our model 

to account for the phonon group velocities [14]. 
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